If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-35X+205=0
a = 1; b = -35; c = +205;
Δ = b2-4ac
Δ = -352-4·1·205
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-9\sqrt{5}}{2*1}=\frac{35-9\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+9\sqrt{5}}{2*1}=\frac{35+9\sqrt{5}}{2} $
| 0.4(x-10)=20 | | -8n+4(1+30n)=-6n-14 | | 976=d÷380 | | -5=d2-8 | | -4K=8-6k | | -17=2w+-5w | | 3(5x-4)-20=13x-4 | | -8(-8x*5)=5x-35 | | -3s+5=14 | | -10-n=-8n+4 | | -14-7x=10x-5 | | 37=4d/5+9 | | 2(y+1)-5(y-1)=7y+7-10y | | 10m-5=5m+10 | | -9w-1=10+3w+2w | | 5-5(x+6)=-26-5x | | 5x-14=4x6 | | -31-4x=-5-5(5x+4) | | -7(4x+4)-7x=-28+3x | | -5.4=7.4+u/8 | | 7/8x=2800 | | x=(0.2-0.25)/0.3 | | -48+7p=64 | | 4a^2-8a-23=2 | | -4x+3+x+5=-4(x+3)+19 | | 11=(5(1+8x))+(-6(x-1) | | 4n+6=7n-12 | | -2x-5x=25-18 | | 2.23=m-3.77 | | 5(3x+9)-2x=15x-3x-10 | | -5x+2+x+4=-5(x+2)+18 | | y=9E-05(20,2)+0.0225*20+0.5604 |